Impact of climate change in the marine environment of the Iberian Peninsula

Mariana Bernardino,
Marta Gonçalves, Carlos Guedes Soares

CENTEC- Center for Marine Technology an Ocean Engineering, IST, Lisbon, Portugal
CLIMENA

CLimate change Impacts on the Marine Environment of the North Atlantic

✓ 3 year national project funded by FCT (Portuguese foundation for Science and Technology)
✓ Collaboration with the Portuguese Institute for the Sea and the Atmosphere (Portuguese Mett Office)
✓ Started 1st October 2018
✓ It’s a follow up of the CLIBECO exploratory project (EXPL/AAG-MAA/1001/2013)
The main objective of CLIMENA is to study the impacts of climate change in the North Atlantic wind and wave climate with special focus on the coast of the Iberian Peninsula.

Aims to:
- extend the simulations done in exploratory project CLIBECO
- evaluate changes at different spatial and temporal scales
- relate to large scale atmospheric regimes
- study the impacts of marine climate change on different areas
 - routing of maritime transportation
 - assessment of wave and wind resources
Data and models

Reanalysis

ERA-Interim from ECMWF
ERA5

Climate simulations

EC_Earth RCP8.5 simulation – EC-Earth is a global climate model system based on the weather forecast model of the ECMWF in its seasonal prediction configuration as the base of climate model.

EURO-CORDEX

Meteorological model

IFS- Integrated forecasting system (ECMWF)
WRF- Weather Research & Forecasting – mesoescale model

Wave models

WWIII – for large scale wave simulations
SWAN – for coastal wave simulations.
Climate simulations

Large scale → Regional scale

EC-Earth → WRF → 10 meters wind

10 m wind Sea ice cover → WAVE III → Boundary conditions → SWAN → Waves

CLIMATE CHANGE IMPACTS ON MARINE CLIMATE, SHIP ROUTES, STORMS, WIND AND WAVE ENERGY
North Atlantic wave simulations

To perform the large scale wave simulations

WAVEWATCH III (WW3) (Tolman 2016) - third generation wave model developed at NOAA/NCEP

Domain: North Atlantic, Global

Spatial resolution: 0.5° by 0.5°

The wave spectrum was discretized using 32 frequencies, being the lowest frequency equal to 0.0373 Hz (increment factor=1.1) and 24 directions.

Forcing: EC-EARTH (historical, RCP8.5)

10 meters wind components and ice cover

Simulations

30 years present climate (1979-2008)

10 years future climate (2031-2040)
Regional Wave Modelling

➢ While WW3 was used to generate waves for the entire North Atlantic basin, the SWAN model was used to study the evolution of the waves in the Iberian Peninsula.

➢ The SWAN model is a third-generation phase-averaged wave model based on the action balance equation.

➢ The model describes the propagation of the waves from offshore to nearshore, considering a wide range of physical processes.

\[
\frac{\partial N}{\partial t} + \nabla_x \cdot \dot{x} N + \frac{\partial}{\partial k} k N + \frac{\partial}{\partial \theta} \dot{\theta} N = \frac{S}{\sigma}
\]

• Bathymetry
• Boundary conditions
• High resolution wind input
SWAN parameterization tests

One year- 2003

Wind forcing WRF (forced by ERA-Interim)
6 hour and 0.1° resolution

Boundary conditions – spectral information from ERA-Interim

OUTPUT:
Wave parameters fields – 6h
Selected locations:
Wave parameters and spectra- 3h

Comparison with 3 buoys in the Portuguese coast
- Leixões
- Sines
- Faro

<table>
<thead>
<tr>
<th>Experiment</th>
<th>LEX</th>
<th>SINES</th>
<th>FARO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.15</td>
<td>-0.12</td>
<td>-0.49</td>
<td>0.41</td>
<td>0.46</td>
<td>0.7</td>
<td>0.21</td>
<td>0.27</td>
<td>0.72</td>
<td>0.92</td>
<td>0.9</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-0.46</td>
<td>-0.44</td>
<td>-0.76</td>
<td>0.68</td>
<td>0.63</td>
<td>0.95</td>
<td>0.35</td>
<td>0.37</td>
<td>0.97</td>
<td>0.88</td>
<td>0.88</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-0.24</td>
<td>-0.29</td>
<td>-0.58</td>
<td>0.48</td>
<td>0.5</td>
<td>0.77</td>
<td>0.25</td>
<td>0.29</td>
<td>0.79</td>
<td>0.91</td>
<td>0.89</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-0.14</td>
<td>-0.18</td>
<td>-0.42</td>
<td>0.41</td>
<td>0.43</td>
<td>0.64</td>
<td>0.21</td>
<td>0.25</td>
<td>0.65</td>
<td>0.92</td>
<td>0.9</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-0.45</td>
<td>-0.41</td>
<td>-0.66</td>
<td>0.67</td>
<td>0.6</td>
<td>0.87</td>
<td>0.35</td>
<td>0.35</td>
<td>0.89</td>
<td>0.86</td>
<td>0.89</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-0.23</td>
<td>-0.26</td>
<td>-0.51</td>
<td>0.47</td>
<td>0.47</td>
<td>0.7</td>
<td>0.24</td>
<td>0.28</td>
<td>0.72</td>
<td>0.91</td>
<td>0.9</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experiment</th>
<th>LEX</th>
<th>SINES</th>
<th>FARO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.57</td>
<td>0.04</td>
<td>-1.02</td>
<td>1.25</td>
<td>1.17</td>
<td>1.63</td>
<td>0.19</td>
<td>0.18</td>
<td>0.36</td>
<td>0.78</td>
<td>0.81</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.76</td>
<td>0.37</td>
<td>-0.67</td>
<td>1.65</td>
<td>1.53</td>
<td>1.32</td>
<td>0.25</td>
<td>0.24</td>
<td>0.29</td>
<td>0.64</td>
<td>0.71</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>-0.21</td>
<td>-1.06</td>
<td>1.57</td>
<td>1.54</td>
<td>1.74</td>
<td>0.24</td>
<td>0.24</td>
<td>0.38</td>
<td>0.7</td>
<td>0.75</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.57</td>
<td>0.07</td>
<td>-0.92</td>
<td>1.25</td>
<td>1.16</td>
<td>1.57</td>
<td>0.19</td>
<td>0.18</td>
<td>0.35</td>
<td>0.78</td>
<td>0.81</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.81</td>
<td>0.45</td>
<td>-0.53</td>
<td>1.66</td>
<td>1.54</td>
<td>1.22</td>
<td>0.25</td>
<td>0.24</td>
<td>0.27</td>
<td>0.64</td>
<td>0.71</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.32</td>
<td>-0.14</td>
<td>-0.92</td>
<td>1.56</td>
<td>1.52</td>
<td>1.66</td>
<td>0.24</td>
<td>0.24</td>
<td>0.36</td>
<td>0.7</td>
<td>0.75</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SWAN parameterization tests

<table>
<thead>
<tr>
<th>Numerical scheme</th>
<th>Wave generation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>JASSEN</td>
</tr>
<tr>
<td>S&L</td>
<td>1</td>
</tr>
<tr>
<td>BSBT</td>
<td>3</td>
</tr>
</tbody>
</table>
Regional wave climate simulation

23 years simulation (1989-2011) compared with available buoy data

- Mean Period Q-Q plots with bias, RMSE, and correlation coefficients for different datasets.
Wind Climate – Euro Cordex (WRF forced by ERA-Int)

10 meters wind magnitude

- Annual mean
- Annual P90
- Winter mean
- Summer mean
Regional wave climate (historical)

Annual statistics

Winter statistics
Regional wave climate (historical)

Mean annual variability

$$\text{MAV} = \left(\frac{\sigma_k}{\overline{x}_k} \right)$$

Inter annual variability

$$\text{IAV} = \frac{\sigma_{\overline{x}_k}}{\overline{x}}$$
PRESENT CLIMATE (1979-2008) EC-EARTH and WW3
FUTURE CLIMATE (2031-2040) RCP8.5

WIND (EC-EARTH)

Hs (WW3)
Future work

<table>
<thead>
<tr>
<th>Nº</th>
<th>tasks</th>
<th>Nº de meses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Production of present and future climate simulations</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Present and future climate analyzes at different time scales</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>Storm characteristics under climate change conditions</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>Climate indices associated with wave regimes in the North Atlantic</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Climate change impacts on ship routes</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>Wind and wave energy potential under climate change conditions</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>Project management</td>
<td>36</td>
</tr>
</tbody>
</table>

PRODUCTS
- **Regional Climatology**
 - Wave parameters
 - Sea states
- **Applications to**
 - Coastal structures
 - Energy
Impact of climate change in the marine environment of the Iberian Peninsula

Mariana Bernardino,
Marta Gonçalves, Carlos Guedes Soares

CENTEC- Center for Marine Technology an Ocean Engineering, IST, Lisbon, Portugal