SQUALL DETECTION AND HINDCAST VALIDATIONS

L. Renac, Aktis Hydraulics SEASTATE CCI 2019

Squalls Identification

1. Introduction

- 1. Squalls definition
- 2. Background and Objectives

2. Use of Satellite Altimeter data

- 1. Verification
- 2. Forward speed and event duration
- 3. Foot print and Averaging interval
- 3. Extreme Value Analysis
- 4. Examples
 - 1. Ghana
 - 2. Brazil

Introduction – Squalls definition

© 2007 Thomson Higher Education

Introduction - Background

- Violent short-lived winds
 - Significant impact on shipping and port industry
 - Moored / weathervaning ships
 - Crane operation
 - Human safety
- Measurements are scarce (squalls are short and local)
- Numerical models struggle to capture them (physics / resolution)
- Satellite data has a global coverage over extended period
 Valid solution to fill the gap
 - > Compensates for length of time with spatial coverage

Satellite data - Verification

Compare exceedance with available in situ data and identify threshold selection for squall isolation

Satellite data - Verification

Compare exceedance with available in situ data and identify threshold selection for squall isolation

Satellite data - Verification

Use satellite imagery to check the location and time of extreme satellite data samples

GOES-12 optical satellite data for event on 22-Feb-2009 at 12:00 UTC. The arrow indicates the altimeter measurement location

Extreme Value Analysis

- Based on the Cumulative Frequency Distribution method
- Assumes homogeneity of the population
 - Need to properly select the data threshold
- Uses the Weibull distribution
- Check sensitivity of results to various parameters:
 - Event duration
 - Estimated Time averaging period
 - Data threshold
 - Confirm that the method is stable
- Validate against Guidelines for locations with squalls where they are available

Example – Ghana

Ta = 10 min Te = 10 min Ulim= 9.5 m/s

Example – Brazil

Hvdraulics

Ta = 12 min Te = 30 min Ulim = 13 m/s

Hindcast validation

1. Global Validation

- 1. Maps
- 2. Taylor diagrams
- 2. Point Validation

3. Event Validation

- 1. Scatterometer Overlay
- 2. Altimeter Latitude

RMSE between model and Altimeter

Taylor diagram of model vs Altimeter for U10

Point Validation - model vs Altimeter

Scatterometer Overlay Model at 12h, Scat at 12h

Hydraulics

Altimeter vs Model, Hm0

Conclusion

- Squalls:
 - A way of extracting very specific information out of a satellite database
 - Data is suitable for preliminary design
 - Limitations
 - Future plans include verifying results in squall areas where measurements are available.
- Global validation
 - General statistics about model quality
- Event validation
 - Case base verification of model performance

Thank You

Questions?

Satellite data – Forward speed

Use satellite imagery to estimate the forward speed and event duration

GOES-12 Water vapor image on 22-Feb-2009 at 06:00 UTC (left panel) and 15:00 UTC (right panel)

Satellite data – Time Averaging

Satellite averages over space but for design we need a time average (Ta) - and we need to know what that time is.

Satellite data – Time Averaging

So we compute Ta = L/V with:

- V=forward speed of the squall
- L=footprint of the Satellite

Conclusion

- Important input data:
 - Altimeter data
 - Averaging time (Ta), from forward speed and foot print
 - Event duration (Te), from altimeter data and satellite imagery
 - Selection Threshold
- Data is suitable for preliminary design
- Limitations
- Future plans include verifying results in squall areas where measurements are available.

Results of the sensitivity analysis in Ghana

		Storm Duration (Te)						
		2.5 min	5 min	10 min	20 min	30 min		
Ta	5 min	29.5	28.7	27.8	26.9	26.4		
		2.7%	-0.2%	-3.2%	-6.7%	-8.9%		
	10 min	30.4	29.6	28.7	27.8	27.2		
		5.7%	3.0%	0.0%	-3.4%	-5.5%		
	20 min	31.5	30.6	29.7	28.7	28.1		
		8.8%	6.1%	3.3%	-0.1%	-2.1%		

Sensitivity Analysis of 100yr 10-minute average wind speed to estimated Storm Duration and Time Averaging offshore Ghana, value in [m/s] and percentage of variation

Results of the satellite imagery checks in Brazil

Event num- ber	date	time [UTC]	U ₁₀ [m/s]	Conv. Clouds	Synoptic Situation
e1	9-apr-2010	13:21	25.4	Yes	Frontal trough
e2	22-feb-2009	12:29	21.5	Yes	ITCZ
e3	17-dec-2014	07:31	18.4	Yes	Frontal trough
e4	18-Nov-2014	08:56	17.8	Yes	Frontal trough
e5	4-Jun-2005	14:45	17.6	Yes	Other
e6	01-Jun-2004	14:53	17.0	Yes	Other
e7	30-Jul-2007	09:35	17.0	No	Frontal trough
e8	29-Jun-2004	17:04	16.9	Yes	Other
e9	18-Jan-2004	21:11	14.8	Yes	Frontal trough
e10	3-Feb-2004	06:23	14.7	Yes	ITCZ

Top 10 events near Sergipe

Information extracted from optical imagery for top 10 events near Sergipe

References for validity of the Satellite data under 25m/s

Calibration and Cross Validation of a Global Wind and Wave Database of Altimeter, Radiometer, and Scatterometer Measurements

<u>I. R. Young</u>, <u>E. Sanina</u>, and <u>A. V. Babanin</u>Department of Infrastructure Engineering, University of Melbourne, Parkville, Victoria, Australia https://journals.ametsoc.org/doi/full/10.1175/JTECH-D-16-0145.1

33 years of globally calibrated wave height and wind speed data based on altimeter observations

Agustinus Ribal & lan R. Young

Scientific Data 6, Article number: 77 (2019)

https://www.nature.com/articles/s41597-019-0083-9

STD between model and Altimeter

Standard Deviation between CFSR/ERA5 wind speed input and IMOS Satellite observations

Mean error Model vs Altimeter

Sample density Altimeter

SAKTIS Hydraulics

Taylor diagram of model vs buoys for Hm0

Taylor diagram of model vs buoys for Tm02

Scatterometer Overlay Model at 12h, Scat at 13h40

Scatterometer Overlay Model at 15h, Scat at 13h40

