# Toward monitoring ocean wave activity using seismic stations



M. Schimmel<sup>2</sup>, F. Ardhuin<sup>3</sup>, M. Meschede<sup>1</sup>, V. Farra<sup>1</sup>,

- 1. Institut de Physique du Globe de Paris, France
- 2. CSIC-ICTJA, Barcelona
- 3. IFREMER













Greece - Magnitude:6.1







MARS



# EARTH



No ocean on Mars $\rightarrow$  No microseisms $\rightarrow$  Noise level 1000 lower between 0.1-1 Hz



والمراوية والمساورة والمراك والمراحية والمرجوع والمراجع والم والمراجع والمراجع والمراجع والمراجع والمراجع والم والمراجع والمراج



والمارينا والمستقدية والمروا ستنقده والموالية والتحديد فيتنقد فالمتلا والمتحدين والمروا والمتحدين والمروا والمتحدين والمروا والمتحدين والمروا والمتحدين والمروا والمتحدين والمحديد والمحديد والمتحدين والمحديد والمحدود والمحديد والمحديد والمحديد والمحديد والمحديد والمحديد والمحديد والمحدود والمحدود والمحدود والمحدود والمحدود والمحدود والمحدود والمحدود والمحدود والمحديد والمحديد والمحديد والمحديد والمحديد والمحدود والمحدود والمحديد والمحدود والمحديد والمحدي



والمراوية والمساورة والمراك والمراحية والمرجوع والمراجع والم والمراجع والمراجع والمراجع والمراجع والمراجع والم والمراجع والمراج



والمراوية والمحاد والمراك والمراحية والمرجوع والمراحل والمرجوع والمراجع والمراجع والمرجوع والمراجع والمرجوع والمرجوع والمراجع والمرجوع والمراجع والمرجوع والمراجع والمرجوع والمراجع والمرجوع والمرجوع



Noise with periods between 1 and 500 sec are generated by oceans waves

### Ocean wave spectrum



Wind sea and swell  $\rightarrow$  primary and secondary microseisms Infragravity waves  $\rightarrow$  hum

> Longuet Higgins, 1950 Hassselman 1963 Ardhuin, Gualtieri, Stutzmann, 2015

# Secondary microseisms (period 1-10 s)



a) Pressure Model



Waves are computed every 6 hours Code WAVEWATCH III 6-hourly wind analysis from ECMWF

Ardhuin et al., 2011

# Secondary microseisms (period 1-10 s)

Pressure sources every 3 hours (IFREMER model)





large amplitude surface waves and tiny body waves

#### Surface waves: Rayleigh waves source site effect

30°N

30°S

60°S

180

Amplification factor for the seismic wave period T=6s 0.8 0.7 60<sup>0</sup>N 0.6 30<sup>0</sup>N 0.5 0.4 00 Period=6s 0.3 30<sup>0</sup>S 0.2 60<sup>0</sup>S Bathymetry 0.1 1000 n 120<sup>0</sup>W  $60^{\circ}W$ 60<sup>0</sup>E 120<sup>0</sup>E 180<sup>0</sup>W 180<sup>0</sup>W -2000 -3000 Amplification factor for the seismic wave period T=10s -4000 0.8 -5000 0.7 6000 60<sup>0</sup>N 7000 DRV 0.6 20°E 180°W 30<sup>0</sup>N 0.5 0.4 Period=10s 0.3 30<sup>0</sup>S 0.2 60<sup>0</sup>S 0.1 0 120<sup>0</sup>W 60<sup>0</sup>W 60<sup>0</sup>E 120<sup>0</sup>E 180°W 180°W 00

Longuet Higgins, 1950, Kedar et al., 2007, Ardhuin et al., 2011, Stutzmann et al., 2012



### Seconday microseisms surface waves

SSB 2008



Spectrogram are well modelled (frequency content and amplitudes) Strongest PSD are due to large storms

Weaker PSD is due to coastal sources related to ocean wave coastal reflection

#### Seconday microseism surface waves



Stutzmann, Ardhuin, et al., GJI, 2012

# Sea ice effect on seismic noise





In winter, decrease of the amplitude of

- the primary microseism (10-15sec)
- the short period secondary microseism

Stutzmann, Schimmel et al., 2009 ; Grob et al., 2011



# Secondary microseism body waves



### Secondary microseisms body waves detection

dominant frequency



The array record P-waves from multiple sources

Each source is defined by its location, corresponding to a P-wave slowness:  $s = (s_x, s_y)$ and its dominant frequency f



#### **Back projection**











































### Secondary microseism sources at global scale





#### Comparison of back projected sources







Energy and dominant frequency are accurately modeled

Meschede, Stutzmann et al., JGR, 2017

### **All sources**



Meschede, Stutzmann et al., JGR, 2017



Meschede, Stutzmann, Schimmel, 2019

# Conclusions

- Seismic data provide long time series that can be accurately modeled using sources from oceanographic models
- Body waves enables to extract individual sources
- Seismic data are very sensitive to the wave coastal reflection coefficient

### On going work:

- Analysis of longer time series
- Machine learning for building new catalogue of sources
- Improve the modeling of noise



